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AW.)t 4 'CA ABSTRACT

A'imdel of optical and Infrared wave propagation In scattering
media is derived from Maxwell's equations. It allows for the cal~cula-
tion of the irradiance profiles of the forward- and the backward- "
propagating beaus which result from the Interaction of a coherent beam
with a scattering medium. The method accounts for all orders of scat-
tering and Is applicable to inhomogeneous media. The range of validity
is limited by the co-ndit ion that the fractional volum occupied by the
particles to the *thi po wer must be such smaller than unity. I~,'

On a ais au point, a1 partir des eiquations de Maxwell, un modgle
de propagation des ondes optiques et infrarougee dane un milieu diffu-
sant. Ce mod&le perust de calculer lea profile de l'intensits lurni-
neuse des faisceaux se propageant vers l'avant at vers l'arriare at qui

'a, r~sultent de l'interaction d'un faisceau coherent avec lee particules.
La imithode tient coupte de tous lee ordres de diffusion at peut slap-
pliquer auz milieux inhomoggnes. La domains de validit et limits par
la condition suivante: I& fraction du volume occupf par lea particules
11 1& puissance jdoit Itre beaucoup plus petite qua l'unitG.
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1.0 INTRODUCTION

A characteristic feature of modern warfare is the widespread use

of electro-optical systems designed to enhance the effectiveness of

various weapons. However, poor weather conditions and/or artificial

obscurants can severely degrade their performance. Hence, a require-

ment exists for understanding and predicting the propagation of elec-

tromagnetic waves under adverse conditions created mostly by the pres-

ence of suspended natural or man-made aerosols.

Propagation in thin or tenuous clouds is well understood and

documented (Refsa. 1 and 2). It is governed by simple and exact single-

scattering equations which explain numerous atmospheric phenomena.

However, for military applications, there are many instances of low

*visibility conditions where the single scattering hypothesis fails. In

such dense clouds, the optical rays undergo many scattering events

before escaping the medium, reaching a target, or being detected.

These ultiple scatterings have nonnegligible and often dominant

effects on the propagated wave. Analytic methods (e.g. Refs. 3-5), 1

transport methods (e.g. Refs. 6-15), and Monte Carlo simulations (e.g.

* Ref s. 16-17) have all been used to study this problem. The mathematics

are complex and no general solution has been obtained yet. The numeri-

cal analysis based on the Monte Carlo method is time-consuming and

provides empirical relations only. Fortunately, there are special and

practical cases where simplifications are possible, which result in

useful approximate theories. The most accurate of these approaches was

developed at Defence Research Establishment Valcartier (DREV) (Refsa.

11-15). It consists Of the exact series solution of the small-angle

approximation to the radiative transfer equation. The model is very

convenient for numerical computations and gives valuable insight into

the relative effects of the various scattering orders. However, It is

resricedto homogeneous media and it does not appear readily applica-

ble to the Important Inverse problem of interpreting lidar measurements

for the determination of the optical properties of the medium.
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A model based on a different theoretical approach is developed

here. It stems from the Maxwell's equations of electromagnetic wave

propagation and not from the radiative transfer equation. The method

predicts the irradiance profiles of the forward- and backscattered

beams including the lidar configuration. All orders of scattering are

. accounted for but they are not individually identified. The theoreti-

cal basis is outlined in Chapter 2.0. Chapter 3.0 describes the sto-

chastic approach. The original features of the model are introduced

and discussed in Chapter 4.0, and Chapter 5.0 gives the resulting prop-

agation equations. Sample solutions for beam waves and plane waves are

derived and analysed in Chapters 6.0 and 7.0 respectively.

This work was performed at DREV between January and December

1983 under PCN 33B07, Atmospheric Propagation of Laser Beams.

*2.0 THEORETICAL BACKGROUND

The object of this work is to describe the propagation of the

forward- and backward-going electromagnetic waves in a particulate

medium. We restrict the analysis to situations where polarization

effects are negligible. Under this approximation, the wave electric

field E can be considered scalar and, from Maxwell's equations, it

satisfies the equation

..

V2 E ]- E , [I]
8t 2  c 2

where V2 is the three-dimensional Laplacian operator, t is the time, p'

is the relative magnetic permeability, e' is the relative dielectric

constant of the medium, and c is the speed of light in free space. The

right-hand-side function S is the source-sink term arising from the
o.9 interaction of the forward- and backward-propagating waves through the

particles in the medium. S is related to the current and charge densi-

ties induced on or within the particles. However, it will not be

... °..
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formulated in this exact fashion here; it will be modeled as described

later in Section 4.1.

We consider only one temporal Fourier component of the electric

field. If w denotes the angular frequency of the wave, the temporal

Fourier transform of eq. 1 yields

- i.'c)a 2 - -

, S, [2]
c2

where the tilde (-) denotes a Fourier transform. Equation 2 was sim-

plified through the approximation w >> (pl,)- which is well

justified for optical and infrared waves. The product (p'e') is the

square of the complex refractive index n and it is written

P I n2. [3]

We seek a solution of the form

E - A exp [ik(+ + )], [4 ]

where z is the coordinate along the main direction of propagation,
i - , ', k2 - w2(n ro2 - n o2)/c2 is the wave number, nro and nio are

respectively the real and imaginary parts of the reference refractive

index, and A and # are functions to be specified below. On substitut-

Ing eq. 4 for E In eq. 2, we obtain after separation

+ V V VU [5]

-+ V V V U, [6]~~z 5, ;, u b],

- "... . .. .. .. . . | ' i | -... ** *.* *.* -,*..- .
k N

. . .~ 
m

" --=
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+f V A + I Af V VYf + 2A f9 ef-ik(z+ f), [7]

-b b + I V2A S e-1k(z+%)'[8]
-8- + b V + b V •. b + kWAb -2k b =b

where the subscripts f and b refer to the forward and the backward wave

respectively, and where N and 4= V%. The functions U and W are

defined as follows:

n 2 -n 2 -n 2  + ni2  []

-n 2 n 2

ro ionn- i[9

n 2  [10

ro io

where nr and ni are the real and imaginary parts of the instantaneous

and local complex refractive index of the particulate medium.

Two types of separation were performed in obtaining eqs. 5-8;

first, the separation into the forward and the backward waves which has

its basis in the + and - signs in eq. 4, and second, the separation

into an equation for the phase front angle V and the amplitude A. The

latter separation is different from the more common practice of factor-

ing out the real and imaginary parts in eq. 2. The basis is to uncou-

ple the equation of V (or *) from that of the complex amplitude A.

Equations 5 and 6 are the eikonal equations, or the geometric

optics equations, of the forward and backward waves. The surfaces

(z+ ) " constants are the geometric phase fronts and the vector (V + k)

gives the direction of the optical rays, where k is the unit vector

.- along the z-axis. Hence, from eqs. 4, 7 and 8, it follows that A is
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the complex amplitude defined on the geometric phase front. This com-

plex amplitude embodies the phase perturbations induced by diffraction.

3.0 STOCHASTIC APPROACH

For the present analysis, we model the particulate medium as a

space-time random function of the complex index of refraction n. This

function can be specified from the given properties of the medium, i.e.

the number density of the particles, their shape, their size distribu-

tion, the distributed complex refractive index within the particles,

and the complex refractive index of the surrounding medium. Hence, the

quantities V and A are random functions and the governing eqs. 5-8 are

stochastic equations.

There is no known general method of solving for the random func-

tions V and A. In any case, this would yield much more information

than is required in practice. The quantities of interest are the aver-

ages and one possible approach consists in using the stochastic eqs.

5-8 to derive deterministic equations for these averages or statistical

moments. In the present application, we are interested in the moments

<A> and <AA*> which are respectively the average field amplitude and

the average irradiance.

The method of derivation is as follows. First, the functions U

and W representing the medium properties are written as sums of an

average and a random part, i.e.

U - <U> + U; <u> - 0,[]

W - <W> + w < w> - 0, [12]

where the pointed brackets denote ensemble averaging. The same decom-
A. position is performed for the dependent wave front function

j 
rj
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V - V>+ v ; <v>- o. [13)

The field amplitude A is separated in a slightly different way into a

coherent (subscript c) and an incoherent (lower case letter) contribu-

tion

A-A + a ; <a>- o. [14]A AC

.- The component a is random and represents the scattered amplitude.

The component Ac is not fully deterministic. There are randomly

distributed holes in the profile of A left by the presence of the
c

scatterers.

If we substitute eqs. 12-14 for W, V and Af in eq. 7 and drop

the subscript f for brevity, we obtain

'A -+-1+ <V> VA + <V> . Va +v. VA +v. Va

1 1 1 1
+ -1'A V V .<V> +, a V *<V> +'A V V .v+.a V v

2 c -2 - 2 c 2

+ k <W> A + k <W> a + kw A + kwa
c c

- v2% -LVa - e- 'k(z +*) .

V2 A 2 a 8[15]
2k c 2k

The term of the form V . VA are transport terms. They account for the

propagation of the amplitude A along the rays of direction (k+V). The

term -L A V . V represent the compressibility of the amplitude. A

increases if the rays converge and decreases if they diverge. Accord-
ing to this general interpretation, we can set in eq. 15

v. VA 0, [16]

4 D

S*. *°:-

Mr- 3 f
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which states that the coherent amplitude is not propagated by the inco-

herent or scattered rays. Physically, this is explained by the fact

that Ac - 0 immediately past the particles so that it cannot be trans-

ported by the scattered rays that originate from the particles. On the

other hand, the term-y Ac . v Is not zero instantaneously since it

models the action of the scattering rays on the nonzero coherent ampli-

tude that impinges on the particles. The term- A V . v is responsi-
2 c - -ble for the depletion of the coherent amplitude, i.e. its transforma-

tion into scattered amplitude. It can be rewritten

I A V.v -IA>. v+-I (Ac - [A 
>) V . v 17]

2 c- 2 C 2- (A CA>V

Taking the ensemble average of eq. 17, we have

<A V" v>- <(Ac-<A >) V. v>. [18

Whereas the function (Ac-<Ac >) is characterized by narrow negative

spikes created by the shadows of the particles and does not depend at

all on their refractive index, the random phase-front function V.v is

distributed more uniformly over the complete space and is a strong

function of the refractive index of the particles. Therefore,

(A -<A >) is, for all practical purposes, not correlated to V.v and it
c c

follows from eq. 18 that

1 <A V . V> =i c - 1 - 0 ,[19]

and similarly that

<Ac w> = 0. [20]

Using eqs. 9-20 and applying them to both the forward and the

backward fields, noting that <A>-<A >, dropping the subscript c when .
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not necessary, and taking the ensemble average (term by term) of the

stochastic eqs. 5-8, we derive the following set of deterministic equa-

tions for the average wave front angles and wave amplitudes:

-O<V f >

.1 - + %> V ' f> [<U> < "% .6 'j .• [ % > ]. [22]

at a

f(b + <V > .A

V2<A

kLv2 f>m-m-k Cwaf> V. (! ab > + I I!V If>

+ <S f eikZ% [24]

b + <•  V 4, % > + <A >• V. <V k <t

Subtracting eqs. 23 and 24 from eqs. 7 and 8 respectively, and using

eqs. 9-20, we arrive at the equations for the random amplitudes a f and

4 abn

i >- + < .V + aV <V .<> g + k < V2 &ac .4~ f 2 f f f 2k f

_ {kwaf -k <waf> -kwA f Af a +. •

77v

abI.
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1 - ~ >
-Z •f af + .! af X. -. <X af> +- <afV v • >

+ s f exp[-ik(z+,f)] - <Sf exp[-ik(z+f)]>'}. [25]

i bab1 iLV2a

- -4b+ v> . Va +-a V. <V>+ k <W> ab- 2 a
8z ~b 2b- " b 2k b

{kwb - k<wa>)I - kvAb -1 Ab•
b1 1

{, . V ab +- - a V •b - V . <b a>+" <a b>

~b2 b. - 4b> b

+ I'b exp[-ik(-z+$b)] -'bexp[-ik(-z+%)]>4. [26]

Finally, the equations for the average forward- and backward-scattered

irradiance are readily obtained from eqs. 25-26 and 16-20. They are

<& f a> " > + < >  + 2 k < > <,
If>. V <afa* > + afa* >V V+ <Wfaf>

i
-I v. [<, af>- <af V a*]

= -2k <,afa > - k <vaf> <Af* - k <eva> <Af>

f f f f*
-1 <A > <a* V" ,>- <A >* <a .,>

-V . <4vfa*> + <a* exp[-ik(z+#f)]>
- -4f f ff

+ <af S* ep[+ik(z+f)]>, [27]

b (a a* b + " a* *+ >  >+ 2k <W> < a >

4a -bV<b b - 4 bb

21., ' f 0
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i V [<, V ab> - <a V a*>

- 2k <wa a*> -k <us > bA-k<a>A>

- <. b> 'at V. - >- .12 A> . lb>

- *> 4 ~~ + ~ bexp[-k-+b]

+ % S* exp[+ik(-z+$b)]>. [28]

The system of deterministic eqs. 21-24 and 27-28 is mathemati-

cally unclosed insofar as it contains more unknowns than equations,

such as the moments <Vfaf?* <afV.v.>, etc. This is the classic closure

problem always encountered in the treatment of statistical phenomena

governed by nonlinear and/or quasi-linear stochastic equations, such as

eqs. 5-8. The complete mathematical model contains an infinite set of

equations. Hence, workable models require closing this hierarchy of

equations at a practical order.

The set of eqs. 21-24 and 27-28 is exact in the framework of

unpolarized forward- and backward-propagating waves scattered by a

4 4particulate medium, but it is indeterminate. The essence of the pro-

posed model will consist in deriving constitutive relations to relate

the unknown statistical moments on the right-hand sides of eqs. 21-24

and 27-28 to the lower order functions <A> and <a&*>.

.'

4~
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4.0 MODEL

4.1 Source-Sink Terms

The first element of the model is the formulation of the source-

sink terms. These terms are responsible for the interchange of energy

between the forward- and the backward-propagating waves. This interac-

tion arises because of the backward reflection and scattering by the

individual particles of a fraction of the impinging radiation. Instead

of trying to solve this problem by rigourously applying the electromag-

netic boundary conditions at the interface of the particles and the

surrounding medium, we model the backscattering source-sink terms in a

form mathematically similar to the forward scattering interaction as
1expressed by the terms of the form- AV.V of eq. 15. Hence, we write

*~ ~ f eikz~ob) !. - , [29]

I ik( b - -
2 eZ+f)AV (v - [30]gb "T f f. Xr-

where and z are the backscattered random geometric phase front

angles of the forward and backward wave respectively. They will be

determined by application of the reflection-refraction laws at the

interface of the particles.

The mechanism of separation into a forward and a backward compo-

nent modeled by eqs. 29 and 30 is somewhat arbitrary. The original

Maxwell's equations contain no such distinction. In effect, eqs. 29

and 30 amount to a special and simplified treatment of the boundary

conditions at the interface of the particles. Although heuristic, this

separation into forward- and backscattering is very convenient in prac-

tical applications.
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4.2 Hypotheses J
The second most important element of the model is the derivation

of the constitutive relations for the higher order unknown moments.

The derivation is based on the following hypotheses:

Hypothesis 1. The random phase front angle v and amplitude a are

only weakly correlated. This approximation is consistent with the

governing eqs. 5-8, for they imply that v is independent of a and that

the random a is the result of repeated interactions with the phase

front angle v over the complete propagation path and not only at the

point of observation. What the hypothesis means, for instance, is

that

<v&> << <v v >1 <ae*>I .  [31]

Such a relation was experimentally verified in the random continuous

medium of turbulence (Ref. 18). In particulate media, we have no such

direct measurements but the hypothesis is self-consistent. For exam-

ple, the result obtained for <va> satisfies the inequality [31] if

<V.V> << 1. From the equation for X. we find that the standard devia-

tion of X i.e. <v~v> , is of the order of the fraction of volume

occupied by the particles to the power 1. For naturally occurring

aerosols, this quantity rarely exceeds 10 - 5 which gives <v.v>i a 0.06.

Hence, the results derived from Hypothesis 1 are self-consistent under

most practical conditions.

Hypothesis 2. The cross correlations between quantities per-

taining to the forward and backward waves are negligible, e.g.

* v ,,ea < b  . 0. [32]

J .

" "" : " . " %M. ', "-V '. . "W" "'A-\- .'-L'. "-.'- " ,'"- ."''.*-*"-' . ',... ' -,':-' .' . -. ' < . .-
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Although there is some interdependence between the forward and backward

waves, the local quantities depend mostly on the random properties of

statistically independent regions of the scattering medium. Hence, the

hypothesis appears well justified, especially since the cross-correla-

tion terms are always neglected by comparison with direct-correlation

terms.

Hypothesis 3. Although not essential, we make the paraxial

approximation. This considerably simplifies the mathematics and fol-

lows from our finding that the standard deviation of the random phase

front angle is not larger than -. 06 for most practical applications.

Hypothesis 4. The particulate medium is statistically homoge-

neous and isotropic over a domain the size of the beam diameter. This

approximation is well justified for propagation of low-divergence laser

beams.

Hypothesis 5. The random phase front angle is statistically

homogeneous and isotropic in the plane transverse to the main direction

of propagation, the O-z axis. This is consistent with Hypotheses 3 and

4 which guarantee that all the rays reaching a plane z traverse statis-

tically equivalent paths.

Hypothesis 6. The complex amplitude covariance function is

quasi-homogeneous and quasi-Isotropic in the transverse plane. More

specifically, we assume that it is of the form

<a(z ~rI)a*(zr,2) >- F[z ,z 2 ;(rf+r 2 )/2] . f[zl,z 2 ; rl-r 2 ], [33]

where F and f are unspecified functions used to illustrate the

functional dependence only. This is a standard approximation made in
Pt

the presence of an average gradient. It is not essential but very

convenient.

e0

4 J
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4.3 Constitutive Relations

From Hypotheses 3-5, eqs. 21 and 22 simplify to

+ <4 > <V >- 0, 
[34]

6V6>>M0, 
[35]

where V1 denotes the two-dimensional gradient operator in the trans-

verse plane, I.e. with respect to the two-dimensional position vector

r. Equations 34 and 35 show that the average phase front angle is

independent of the statistical properties of the medium. The solution

of eq. 34 for an initially spherical phase front with radius of curva-

ture (focal distance) F is given by

W >- r/(z-F). [36]

From eq. 27 and the assumption of statistical symmetry of the scat-

tering pattern with respect to the incident ray it follows that

%> - -<V > - -r/(z-F). [37]

The first step toward the determination of the constitutive

relations Is the solution for the random amplitudes af and ab . Solving

implicitly eqs. 25 and 26 with the respective boundary conditions

a f(z-0) - 0 and ab(Z=Z) - 0, we find

Ik z z -

af(zr) exp f-f k4i>dz' I dx
p f ff d2 s gf(x,8)

0 0 -.

,ex - ik F-z F-x 2 fxiJ ~ " 1 {2(z-) -, x F- L ' -; ".- +of kC:w~,,-. [38]

0

.0 *'_
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Z Z

ab(zr) - exp J-f kt<W>dz'} ff d2I gjxz-2%x fd29gb(x's)

z z --

ik z-F A-F2 Z
Sp I - I + k<W>dz'}, [39]

where gf(xs) and gb(x,s) stand for the right-hand sides of eqs. 25 and

26 respectively and where the solutions [36] and [37] have been substi-

tuted for <4 > and <V4>. Equations 38 and 39 are implicit solutions

for the forward and backward random amplitudes since the functions gf

and g contain a and a

The unknown higher order moments are <waf>, <vfaf>. <af V1 . 3f>,

etc. The procedure to relate these moments to the lower order <A> and/

or <aa*> is basically the same for all of them. The implicit solution

for af (or ab) is first multiplied by w, or If, or V . , etc..., and

the products are then ensemble averaged. This produces many terms

under the integral operator of eq. 38 or 39. Most of them can be ne-

glected in relation to a leading term on account of Hypothesis 1, and

further mathematical simplifications can be worked out using Hypotheses

2-6. These derivation steps are lengthy and will not be repeated here;

however they are similar to those followed in Refs. 19 and 20. The

resulting constitutive closure relations are

1 r4o1
k <Wa> f > 2 af <f>, [40]

k <wab> 2 -ab Ab> [41]

1
k <wa a*> = - Re [afs a a f*f> ,  [42]

f f 2 afs

k <wa a*> = - Re b*b> ,  [43]
b b

*0ab. I*'%*

tl
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! ar "_ Xf> I, a f <Af>11,[ ]44]

<a v. [44]
' cab 1. " b cb 'Ab'

<e ik(%b- f) 1[6
<b b Z1 , (*C- )- b bcfA> [45]

ik( h-A)

<e af V - - cb <A b >  [47]

<e aa* a

2 Re[db] <ab ab*>- 2 Re[cf] af af*>, [48]

<4 af > 0, [49]

b ab> = 0, [50]

<V - - Re [ *f < fa* ,  [51]

*f f e~ 1

,. aa*> =- Re[Db] • V.i bab,. [52]

where c.c. stands for the complex conjugate of the preceding term and

where the quantities underlined by a double tilde are two-dimensional

tensors or dyadics.

There are several constitutive relations but they can all be

classified in one of three categories: the particle absorption terms,

eqs. 40-43; the aerosol forward- and backscattering terms, eqs. 44-48;

and the diffusion terms, eqs. 49-52.

The coefficients of eqs. 40-52 are given by the integral opera-

tor 38 or 39 operating on various covariance functions. To simplify

the algebra, we restrict applications to slightly diverging beams. In

that case, the focal length F of eqs. 38 and 39 is large and negative.

S'-* 0.

-, •

'*"o' * -%- l
* q **
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Moreover, the covariance functions operated upon have longitudinal

correlation lengths that are generally much smaller than IF-zI and thus

the major contributions to the integrals come from values of x in the

immediate neighbourhood of z compared with IF-zl. Hence, we can make

the approximation

4F-z

- 1, [53]
F-x

and the following simplified operators G+ and 0- can be written from

eqs. 38 and 39:

- i -A ~ (Z' TO ikp2
O~f~z~;,neo - -ym [4

f ki e -. (rf d2  e 2Ii 2 h(z,r;,), [5
-m-

0 T

_ f _4 e d e 2n  h(z,r;n,), [55]

Swhere h(z,rL,-Tp is a dummy function and where ..

..Af(z,)- f k<W(z-x')> dx', [56]

0

In Ab(z,11) - f k<W(z-x')> dx'. [57]

In terms of the operators 0+ and 0 the particle absorption coeffi-

cients are given by

' '" - 2k 2 0+ [<w(1)w(2)>}, [58]

ab 2k 0 {<w(1)w(2)>}, [59]

afa W2k2 0+ {f(z, ,e) <w(1)w(2)>}, [60]

.- .. .. ...... . . - . . . . . . . . .. '4... ..... ... . .
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I,

%bs ' 2k 2 0- {Gb(z,,p) <(1) w(2)>}, [61]

the scattering coefficients by

-c o+2 J V: <X<e() yf(2)>}, [62]"cf 2 _P -P

b o-JV V - <:(l) %(2)>}, [63]

f -- o- .( z, n, 2) V V• [<V-(l) ye(2)>
,,.p .,.

cf 2 - P ;

+ [64) 2), [64]

0cb --- 0 O[H(zl,yl,p) yv y1: [<Y.;(1) KC(2)>

+ < ,(1) vb(2)>]}, [65]

- J o-{H(z,,p.) Gf(znI.) V [f( 2 )>

+ <X (1) [(2)>)), [66]

1 1 0+{H(z,yje) Gb(ZTbP ) V V: [<Y.(1) , (2)>

and the diffusion coefficients by

1A1

Dt " °  Gf(z,y,) <X(1) Xf (2)>, [68]
Wf 20

Ib 2 lO-Gb(Z' .) v(1) X (2)>, [69]
V

where (1) and (2) refer to the adjacent points (z,r+2/2) and (z--i,r-

/2) of the covariance functions and where

I C

, . .;>. .., -,, r : . ,..,.,. "r "'.",.' -;- - Vy - '*-- \ . -- . ; * 
'
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Gf(zvP) - <If(l) af *(2)> / <aff >, 70]

Gb(Zi1.) - <ab(1) ab ( 2 )> / <abab >, [71]

H~z~~p) <aik [%b(1 )-# b(2)-#f(1 )+Of (2)] >][2-~~l <e u uL >. [72]

The list of symbols at the beginning of this report defines the

individual absorption, scattering and diffusion coefficients.

4.4 Propagation Coefficients

The absorption coefficients af and %b depend on the covariance

function <w(l) w(2)> which involves the real and imaginary parts of the

random refractive index as defined by eqs. 10 and 12. <w(1) w(2)> can

be determined from the specified medium and particle properties, i.e.

the complex refractive indices of the medium and the particles, the

shape of the particles, their number density, and their size distribu-

cin. Then, Oaf and cab can be calculated by direct substitution in

eqs. 58 and 59. Because of Hypothesis 4, the covariance function <w(1)

w(2)> is independent of r over a domain the size of the beam diameter.

Hence, the coefficients af and ob are functions of the longitudinal

coordinate z only. These coefficients are second-order corrections to

the absorption coefficient k<W> of eqs. 23-24 and 27-28.

There are two additional absorption coefficients %afs and Oabs
which depend on the amplitude correlation functions Gf and G b  The

latter functions are not known but their correlation lengths are ex-

pected to be much greater than that of <w(l) w(2)> equal to the average

particle size. Hence, both Gf and Gb may be replaced (in eqs. 60 and

67) by their values at the origin which, by definition, are equal to

unity. Therefore, the coefficients oafs and oabs are respectively

equal to oaf and ab"

V'r NC.4

X&N.
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The calculation of the scattering coefficients (eqs. 62-67) and

the diffusion coefficients (eqs. 68-69) requires knowledge of the phase

front angle covariance functions. These cannot be inferred directly

from the medium and particle properties but only through the solution

of the ray propagation equation. The procedure is to derive the equa-

tions for the covariances of z and xb from eqs. 5, 6, 21 and 22. The

result for slightly diverging beam waves and approximately Gaussian

statistics for v and v is

-W2 <v (1) v (2)> 2 < (1) 4(2) >- V [< p,:(1) v ,(2)>:

.<(l) f(2)>]- - V V <u(l) u(2)>, [73]

and a similar equation for <%(1) %(2)>. The source term <u(1) u(2)>

on the right-hand side of eq. 73 can be determined from the properties

of the particulate medium in the same fashion as for the function <w(l)

w(2)> discussed earlier. Therefore, the solution for <Y(G) Y,(2)> can

in principle be worked out from eq. 73, and similarly for <Xb(1) jb( 2 )>.

The solution of eq. 73 cannot be treated exactly because of the

nonlinear term. No satisfactory method of solution has been derived

yet. However, a preliminary analysis was carried out and order-of-

magnitude estimates were derived. Since the analysis is incomplete and

-may have to be reexamined, only the results will be presented here.

First, the covariance function <v,(l) i(2)> scales as

-> = o(<>1) [74]

For naturally occurring fogs, we obtain from eq. 74 that the standard

deviation of the forward phase front angle fluctuations is of the order

I , -. . . .. • , - . . , . , - . , - . . ., - ., . , - ., -,. - , ' " ' . _

. .- . ,.. ... . . .. . , . . . , •. . . .
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of 10 arad, in qualitative agreement with observations. Second, the

longitudinal correlation length of <Xf(1) !f(2)> is

1 [~L. =. [75]
vs b2 >

where v is the particles number density and %<b2 > is the average parti-

cle cross section. Finally, the transverse correlation scale is

1.- < . v >t L, [76]

which is generally much greater than the average particle radius <b>

characterizing the index covariance function <u(l) u(2)>. Therefore,

in addition to the nonlinearity, analysis of eq. 73 is further compli-

cated by the presence of the three disparate scales L, A, and <b>.

This is particularly troublesome in setting up finite difference meth-

ods of solution. The results are similar for <vb(1) vb(2 )>.

Because of the presence of the derivatives with respect to z in

eq. 73, the quantities <C. >, L, and I are not truly local proper-

ties but they include some form of history of the medium through which

the wave has propagated. In particular, there exists a transition

region near the boundaries of the scattering medium. The size of the

dispersion domain varies with the local conditions and is of the order

ofLx i.

For the backscattering coefficients, we need the functions <v (1)

Xf(2)> and <Xb(l) Zb( 2 )>. These are somewhat easier to determine

because they are not propagated. They define the backscattering prop-

erties at the location where the backscattering occurs. Since the

scatterers are statistically independent, the correlation does not

extend very far. Transversely, the functions <v(1) v(2)> and <(l)

x,(2)> correlate over a region of the same size as the particles, i.e.

a r o se '* particles. V.
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FIGURE 1 - Diagram of primary reflected and refracted optical rays in
the plane of incidence on a spherical particle of index n
surrounded by a medium of index 1.

-<b>. [77]

The contributions measured at points more widely separated are uncorre-

lated because they originate from different and uncoupled particles.

Longitudinally, the average thickness of the scattering sheet over

which there is coherence is approximated by the mean distance between

the particles, i.e.

1/3

L 3 [78]

The variances <v. v> and <" v > are inferred from the propa-
gated <X. X> and < b Xb> by applying the refraction-reflection

boundary conditions at the interface between the particles and the

dSO

"[ :r ,: '-g ': . g9 . .. M . ':';. '. - .",-. ... 2*". '" .-. .* . ) •• -" :
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surrounding medium. Figure 1 illustrates the situation for the special

case of spherical particles. There are two principal contributions

characterized by one external reflection and by one refraction followed

by one internal reflection, respectively. The incidence and exit an-

gles defined in Fig. 1 are related as follows

2 0 [79]

-2 - 2 y, [80]

where

sin y 2 sin e cos e [n2 -2 sin2 e]
n2  p

p

- 2 sin 9 42 - sin2
e [1- 2 sin2 e], [81]

n 2  P

p

and where n is the real part of the particle refractive index. TheP
two main components of < . (or <Vb * y>) for a single particle are

proportional to the variances <#2> and <V2> calculated over the forward

scattering angle y. Since the scattering angle standard deviation is

small, we assume that y is distributed in such a way that the major

contributions to <#2> and <y2> come from small values of y, which

allows the linearization of eq. 81. Moreover, to model the average

backscattering effects of the particles, we -multiply <#2> and <T2> by

the reflection coefficient and by the fractional cross-sectional area

of the particles over the scattering sheet of thickness L We thus

obtain

_ _2 2/3

<• Vf> 
< •  > p V  <b2> [82]

p

"'6 P

4'p,'P - '. * . . - . . *
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16n 2 (2-n )2 2/3
<. * v) * (. > *'

2 ,, [83]
2 (np+1) 2

p

_ > n2 2/3 2a. . z' , 2>, [84]
lb >(n +1)2

16n 2(2-n )2 213
>" >2 < v <b2 > . [85]

X -42 < ;b (n +1) 2

Equations 77, 78 and 82-85 constitute an order-of-magnitude representa-

tion of the covariance. functions 0!,(I) X,(2)> and <j,(1) X6,(2)>.

Some of the backscattering coefficients depend on the correla-

tion function H(z,Tl,2 ) defined by eq. 72. Assuming Gaussian statistics

for the random phase front fluctuations f and *i, which is a Justified

standard approximation, we obtain from eq. 72

-Ik2 (P
2 (Pf + Pb)"(z,yl,p e [8

where Pf and Pb are the forward and backward phase structure functions.

For optical and infrared waves, the wave number k is very large and eq.

86 can be satisfactorily approximated by the first term of the series

expansions of Pf and Pb for small separation distances. These can be

derived from the solutions for <4(1) 4(2)>. We thus obtain the fol-

lowing transverse and longitudinal correlation scales for H(z,np):

.- _.[87]

- vca3 >]

[vc<a3>] (88)

IV..,

r-". 

-
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where X is the wavelength. The scales and LF are small but, for

most practical applications, they remain much greater than the respec-

tive scales A and L of <vZ(l) Z,(2)> and <%(1) 1,(2)>. Therefore,

we my got

H(x,1,e. 1 [89]

in eqs. 64-67 with negligible consequences for the accuracy of the back-

scattering coefficients.

The scattering and diffusion coefficients also depend on the

amplitude correlation functions Gf and Gb defined in eqs. 70 and 71.

For the coefficients given by eqs. 60, 61, 66 and 67, the effects of Gf

and Gb are negligible since the scale <b> of the covariance function

Ow(1) w(2)> and the scales 17 and L of <11) 1(2)> and <v(l) U(2)>

are much smaller than the scales of either G and Gb. Consequently,

the integrals can be calculated with good accuracy by substituting for

f and Gb their values at the origin which, by definition, are equal to

unity. However, in eqs. 68 and 69, the scales of Gf and Gb are compara-

ble to those of the phase front covariance functions. But, even in

these cases, the major contributions to the integrals come from the

neighbourhood of the origin in the (l,p)-space because of the effect of

the rapidly oscillating terml exp ]. Nevertheless, the complete

formal treatment of the diffusion coefficients D and Db requires the

solution of Gf and Gb. Equations for Gf and Gb could be derived from

the stochastic eqs. 5-8 but this would produce multidimensional differ-

ential equations and more unknown moments for which additional constitu-

tive relations would have to be established. Instead, it is hoped that

the following solutions, derived by neglecting diffraction, are suffi-

ciently accurate to account for Gf and Gb in the region adjacent to the -

origin:

'L7

• oa

s



UNCLASSIFIED
26

1 z+,1/2 z+rI/2
Gf(z~n) -exp 8- fdz'fdz" lir V V : <Xf(z',r+-/2) vf(z",r-E/2)>

0 0 +

z-,nl2 z-rn/2

Idz' fdz" i. V V : jfzr~2)~ z",r-2/ 2 )>'- zz+n/2 z-nl/2
:- fdz' fdz" liraVV <Xf(z1,r+2/2) Xf(z",r-p/2)>

1-2n/2 z+n/2
- fdz fdz" li. V V : <Yf(z',r+e/2 ) xf(z".r-e/2)>

0 0 P+

~1'z z
+. fdz' Jdz" li. V V : <jf(zI,./) (z-.-2>l, [901

2 0 O0 !f0ZP J

and a similar equation for Gb(Z,7,1). This will have to be verified

experimentally but the errors are expected to be mall since the prin-

cipal contribution to the integrals of eqs. 68 and 69 which come from

the neighbourhood of the origin are independent of the approximation.

The alternative is a much higher level of mathematical complexity or

the need for some empirical input.

Equations 62-69 and 89-90 give the propagation coefficients in

terms of the forward and backward phase front covariance functions.

5These functions satisfy nonlinear partial differential equations which

were not solved in this report. The principal difficulties are the

nonlinearity of the equations and the presence of three disparate

scales: the average particle size, the mean distance between wave

interactions with the particles, and the latter multiplied by the

forward scattering phase front angle standard deviation. What was

achieved in this report is the determination of these scales and the

derivation of order-of-magnitude estimates of the pertinent variances.

'%%

- . .k
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Consequently, the present state of the model allows only rough esti-

mates for the propagation coefficients.

Although a satisfactory solution of the nonlinear eq. 73 has yet

to be derived, eqs. 58-69 together with eq. 73 for the phase front

angle covariance function provide a formal framework for relating the

propagation coefficients to the medium properties. Moreover, if eq. 90

holds, this problem is totally uncoupled from the propagation problem

since the wave amplitude is not in eqs. 58-69. Therefore, the determi-

nation of the scattering and diffusion coefficients is a well-posed

problem, albeit difficult, that can be handled independently of propa-gation. The situation is somewhat similar to the more common approach

where Mie calculations, needed to specify the phase function, are

performed independently of the solution of the radiative transfer

equation.

Equations 58-69 are valid for inhomogeneous media, the only

restriction being that the size of the inhomogeneities must be larger

than the beam diameter. It must also be noted that the various scat-

tering and diffusion coefficients are not truly local values. They

bear some history of the scattering medium over a region defined by the

convolution of the coherence domain of the phase front angle covariance
functions with the integral operators 0+ and 0-.

The physical interpretations are straightforward. The scat-

tering coefficients are responsible for the transfer of energy from the

coherent state into the incoherent or scattered state, and from the

forward propagating beam into the backward propagating beam and vice

versa. The diffusion coefficients measure the rate at which the scat-

tered energy is spatially diffused, or the rate at which the scattered

beam spreads out. They account for the multiple scatterings.

The diffusion coefficients are dyadics or second-order tensors

4but all the components are not independent. From Hypothesis 5, the



UNCLASSIFIED
28

phase front angle covariance functions are statistically homogeneous

and isotropic in the plane normal to the propagation axis. The general

form for such an isotropic tensor is (Ref. 21) I
<v(1)v(2),- M(z,Tp 2) £e+ N(z, ,p 2 ) . [91]

where 6 is the two-dimensional unit dyad or the two-dimensional C

Kronecker delta and M and N are scalar functions. The diffusion coef-

ficients are thus given by an expression of the form

z _eAf(Z ''  ik 2

- -i A ff d22  e T [M(z,y,p 2 ). + N(z,T, p2) 6]
;' -- 2o --- eAf") d

2 -,z 2T [M(zp2)..N(,.r,p2)], [92]

0 0

or in shorter notation by

-D6, [93]

where D is a scalar function of position z along the direction of

propagation.

The mathematical difficulty of solving exactly for the scat-

tering and diffusion coefficients will be dealt with in a subsequent

work. In this report, we will proceed with the solution of the propa-

"' gation equations. Comparison with experimental data or empirical

modeling can always be used to determine the coefficients.

W?

a.

*1~* I
$ "" *~

] . * ,- *, % : -i '. ' ' . "° '  - "/ / ' '  * -'," ".'.'- '*""'.'.'" ' :r .. '':....: ."'..'." ".",''*'."-';*',.- ;
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5.0 PROPAGATION EQUATIONS

The governing propagation equations are obtained by substituting

the constitutive relations, eqs. 40-52, for the higher order unknown

moments in eqs. 23, 24, 27 and 28. We limit the present analysis to

the wore practical case where there is only one coherent beam transmit-

ted in what is chosen as the forward direction. Under this condition V

<A > - 0. Moreover, we assume that the aerosol diffusion effect is

much more important than the diffraction spreading of the beam, which

is well justified in most applications. We can thus neglect the terms

of the form a V1 . [<a*V a>- <aVla*>]. With these approximations and

using eqs. 36 and 37, we obtain the following set of propagation dl

equations:

a) for the average reduced amplitude A - <A >:
r f

.r -0, [94]
+~ ~ Ic iA -LV a

az +z-F brr z-F +2 I%- a acf2kdf A i r

b) for the forward-scattered irradiance I+ - <a af*>:
f f

81+ .r 61+  21+  -. +
V z7y + + a Re( + - Re(D)V2 4

- Re(af + f) ArA* + Re(db)-, [95]

c) for the backscattered irradiance I- <abab*>

81- r bi- 21-
S- r - + [a - Re(oa + Re( b ' - - Re(D)V 2 - '

bz z-F ar Z-F aabs sb'" b I

- Red A A* + R (d )I4- [96]e cf r r e e

where a is the main contribution to the particle absorption coeffi-a
cient defined by

-J: --*



UNCLASSIFIED
30

a - 2k<W>. [97]
a

Equations 94-96 constitute the proposed propagation model. They

form a closed set of three-dimensional, coupled, partial differential

equations for the solution of the forward- and backscattered irradiance

beam profiles resulting from a coherent optical or infrared beam di-

rected into a particulate medium. The dimensions are reduced to two

under cylindrical symmetry.

The various absorption, scattering and diffusion coefficients

are formally related to the medium properties through eqs. 58-69.

Homogeneity is assumed only on the scale of the beam diameter. The

model handles all orders of scattering in a global fashion but cannot

differentiate between them. However, the single-scattering results can

be derived by dropping eqs. 95 and 96 and solving eq. 94. Similarly,

the first-order multiple-scattering approximation for the backecattered

beam can be modeled by setting I+ - 0 in the right-hand side of eq. 96,

and by arbitrarily adding the forward-scattering coefficient R (a ) to
e cf

[Ga - Re(Oabs) + Re(ob)] in the left-hand side of the same equation to

account for the single-scattering losses.

It is emphasized that the model predicts the irradiance and not

the radiant intensity. Experimentally, this means that (A A* + I+) and -
r rI must be measured with wide field of view detectors.

6.0 BEAM WAVES

We consider the problem of an initially Gaussian beam illuminat-

ing a particulate medium. The propagation coefficients are either

specified directly or have been derived from eqs. 58-69. Then the

propagation eqs. 94-96 must be solved. The principal difficulty

resides in the coupling between the forward- and the backscattered

irradiance. In the present application, the coupling is treated

I ° o.' .. + ,,. .. ... . . .. . . . . -
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iteratively, first by setting 1 - 0 in eq. 95 and solving for I+ and

I- in sequence, and then by substituting the I- solution back into eq.

95 and repeating the process. Under these conditions, the equations

can be solved analytically.

To reduce the number of parameters, we assume a collimated beam,

i.e. F-, and we make the following simplifications

0af saab = afs 0abs' [98]

d ~d [99]
csf = sb cf ccb'

which, from the defining eqs. 58-67, are expected to hold for particles

larger than the wavelength. Furthermore, we define the nondimensional

independent variables

z-n f ot(z')dz', [lOO] '
0

p r/w [101]

where

at S-Re[a a af +  + d f] [102]
ta af cf cf

and where w is the initial beam radius at l/e in irradiance. The
0

nondimensional propagation equations thus become

r 1 + [103]
o-n +2 (+iX)Ar -A r

2 A r - 0 ,

+ M I+ K v2  - A AA* + 1-, [104
5f p r r

4M.4
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-a--r + cI-- K V2 I- c AA* + 1+ .  [105]
bp r r

The similarity parameters are

Im [,- laf + 0 f + df][X-, [106]
at

A 1/(2 kw2  [107]

Re [ afs f ]-, [108]Ot

Re [oaf+ %ff]

- , 
[109]

Re [a;] [110]
at

Re [Df]
"tw

Re[Db] [

°two

For the calculation results presented here, we have taken X, a,

and T to be constant throughout the medium. This constitutes a rea-

sonable approximation if only the particle number density is allowed to

change with little variations in the nature of the particles and their

size distribution. The parameter A varies with at but it is generally

too small to make appreciable differences in the solutions and it was

assumed constant. Moreover, the coefficients and Kb increase from

zero to asymptotic values in their respective transition regions near

,. , {• ..- ,- .-'.. .:.-...'..:. ..:.:... .-, .'.. .'=v .-.:..-. Ix
* I. -, :'..: .,. ?. .. , .>..: . .., , ... . . ' £,.: , -:,....',.>
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the medium boundaries. However, since the scattered irradiance is

small in the transition regions, we have approximated

Kf Kb m cat[13

everywhere with little effect on the resulting solutions.

The solutions were calculated for the boundary conditions

Ar(o,p) - exp (-p2), [114]

r+(o,p) - 0, [115]

I-(,p) - 0, [116]

where is the optical depth of the cloud, i.e.

Z

f at (z')dz'. [117]

The solutions were calculated analytically and only the first iteration

was worked out. The results are presented in Figs. 2-5 for the

following set of parameters: g - 0, A - 4.7 x 10- 5 , a - T - 0.03, -

0.97 and K - 65. These are the estimated similarity parameters for a

1.06 -u, 0.15-w-diameter laser beam propagating in an advective fog of

mass loading equal to 0.5 g(H 20)/m
3 with a modal particle radius of

5 M. The water droplets were assumed to be nonabsorbing.

The transmitted beam irradiance profile, i.e. (A A* + I+), at
r r

- 0,2,4,6 and 8 optical depths are plotted in Fig. 2. The irradiance

is normalized to unity on the propagation axis (p - 0) at the transmit-

ter (ti- 0). The results show that the basic Gaussian shape of the

beam is not appreciably broadened up to optical depths as large as 6.

.",: X .
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Wheeasthe effectsU of mutil scattering were unimportant for

on-axis measurements of the transmitted beam, Fig. 4. shows that they

are significant for the analysis of the detected backscatter. This is

even more dramatic if we consider the lidar signal, i.e. the range-

gated backscatter signal, as illustrated in Fig. 5. At optical depth

3, the difference between the full multiple scattering and the first-

order mltiple-scattering predictions has already reached a multiplica-

tive factor of 10 and it continues to grow with increasing optical

depth. These results have great implications in the interpretation of

lidar measurements. Careful comparison with well-documented data Is

still needed but Figs. 4 and 5 indicate that the effect of multiple

scattering is potentially very important.

The calculation results depicted in Figs. 2-4 agree well with

various ktnown effects of the mltiple-scattering phenomenon, in parti-

cular its greater influence on the backscatter than on the transmission

measurements. These solutions were derived analytically with the help

of a number of simplifying approximations stated at the beginning of

* this chapter. For more general applications, the propagation eqs.

103-105 can be solved numerically with no restrictions on the absorp-

tion, scattering and diffusion coefficients other than the hypothesis

* of homogeneity over a scale of the order of the beam diameter. The

* equations present no particular difficulties for a numerical solution.

7.0 PLANE WAVES

- It is instructive to consider the special geometry of plane or

- spherical waves. This simplification allows complete solutions to be

derived in closed analytic form. These analytic expressions are very

* useful for parametric studies. Moreover, the planar or spherical geom-

etry represents adequately many physical situations, e.g. the planetary

atmospheres, the clouds and the ocean waters Illuminated by the sun.

*..t*.i ->1
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The sane simplifying approximations as in the preceding section

are made. The nondimensional propagation eqs. 112-114 are adapted to

planar geometry by simply neglecting the transverse gradients. We thus

obtain

dA A*
r r + A A 0,11181

d + a + A* + I - [119]

Sd- + a -I- A A* + r 1+.  [120]
TT- r r

Equations 118-120 form a closed set of three simultaneous, coupled

ordinary differential equations. The boundary conditions are

ArA* (0) 1, [121]
r r

r (0) - 0, [122]

1- () - 0, [123]

where C is the optical thickness of the plane-parallel scattering

medium.

The set of eqs. 118-120 is identical to the four-flux theory

described In Chapt. 10 of Ref. 1 where ArAr* ' the forward collimated

flux and I+ and I-, the forward- and backward-diffused fluxes respec-

tively. We have simplified the problem by assuming no backward-

collimated flux and making such approximations as defined by eqs. 98

and 99. These sake the algebra easier but they are not fundamental to

the model. Therefore, the four-flux theory is the plane-wave asymp-

totic form of the propagation =odel proposed in this report. However,

contrary to the four-flux theory, which is constructed heuristically

1% . . .
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with propagation coefficients not clearly related to the physical pa-

rameters of the particulate medium, our model is derived from Maxwell's

equations and the coefficients are formally related to the medium

properties.

The propagation eqs. 118-120 with the boundary conditions 121-

123 are straightforward to solve. The similarity parameters are the

albedo

Reta f + 07f]c [124]

and the ratio of the backscattering to the total scattering

coefficients

Ii

RedIf

.C, cf Jf

. With the further approximation osf < cf. which is almost always sat-

isfied in practical cases, the results are:

a) for the total irradiance transmitted through a cloud of

optical thickness C

ArA*(C) + I+(C) . 2c e-C c [126]
r (64-) - (6-)e -

and b) for the integrated backscattered irradiance from a cloud of

thickness C

M(0 - [z - ez ] [2C127]
(6+c) - (6-) e- 2cC

1'S
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where

6 - (1-9) + I, [128]

62 _ (1-9) [(1-9) + 2M]. [129]

The corresponding single-scattering (SSCT) and first-order multiple-

scattering (FONS) solutions are

[ArA*(C) 55 C.Tm se. [130]

[- ] ( 0. [131]

For spherical waves, we find exactly the sam expressions except

for the ultiplicative geometric factors R22 and R2, on the left-hand

side of eqs. 126(130) and 127(131) respectively. R, and R2 are the

radial positions of the centered front and back spherical boundaries of

the scattering medium.

The transmitted irradiance solutions are plotted in Fig. 6

versus the cloud optical thickness C, for H - 0.04 and various values

of the albedo 9. The decay rate with respect to C varies inversely

with 0 but, in all cases, it remains smaller than for the single-

scattering solution (SSCT). The latter Is reached in the limit 0.0,
i.e. when the absorption becomes dominant over the scattering.

The integrated backscatter results are displayed n Fig. 7. All

the curves saturate to some asymptotic level but the required cloud

thickness and the saturation level increase with 9. If there is no

absorption (9- 1), the transmitted irradiance is eventually all

reflected back for optical thicknesses much greater than 1/11. In the

M
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first-order multiple-scattering limit, the backscattered irradiance .2
saturates quickly for C > 2 and at a level equal to 1Q/2 which repre- L
sents only a small fraction of the transmitted signal.

Figures 6 and 7 show large differences between the plane-wave

multiple- and single-scattering solutions. This is in agreement with

the fundamental differences between the two approaches. In single

scattering, the scattered energy is assumed lost whereas it is simply

redistributed spatially in multiple scattering. Because of the plane-

parallel geometry, the losses at one point due to spatial redistribu-

tion are compensated for by gains from the adjacent regions. Hence,

*. the multiple-scattering solutions should indeed predict higher trans-

mitted and backscattered irradiance levels, as illustrated by our

results in Figs. 6 and 7. Moreover, it is well understood that the

single-scattering solution should become more accurate as the effect of

absorption increases since the absorption represents a true energy loss

to propagation. This is also well verified by the predictions of our

model.

An interesting physical situation is the no-absorption limit,

i.e. 01. In this case, 6+H, isO, and the transmitted and integrated

backscattered irradiances become respectively

Ar*(C) + I+() 1 [132]

- [133]

Bucher (Ref. 16) has shown that Monte Carlo simulations fit very well

the expression

1.69
I ) J 1.42 + (1-<cose>)C [ 134

I. .:
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for (1-<cos6>)C > 1, where I t =A A* + 1+ and where <cos e> is the
r r

average cosine of the scattering angle over the complete forward and

backward directions relative to the incident axis. It is not clear how

(1-<cos >) relates exactly to our parameter H, but they both vary in

the same direction with the ratio of the backscattering to the forward-
scattering coefficients and they are both of the same order of magni-
tude, i.e. a few percent. Therefore, eqs. 132 and 134 show that our

analytic solution is in good qualitative agreement with Monte Carlo

data. This functional relationship was also verified in a laboratory

experiment (Ref. 23).

8.0 CONCLUSION

We have derived from Maxwell's equations a propagation model for

optical and infrared waves in particulate media. It has the form of

simultaneous three-dimensional partial differential equations for the

average amplitude and the average scattered irradiance of the forward-

and backward-propagating waves. These equations involve absorption,

scattering and diffusion coefficients that are formally related to the

statistical properties of the particles and the surrounding medium.

The model handles beams, includes all orders of scattering, and is

applicable to inhomogeneous media provided the inhomogeneity scale is

not smaller than the beam diameter. The main restriction is that the

fraction of volume occupied by the particles to the ith power must be

much smaller than unity, which is well verified in atmospheric applica-

tions. The polarization effects are neglected in the present version.

The propagation equations are linear and simple to solve, at

least numerically. The coefficients are related to the medium proper-

ties through nonlinear equations which are difficult to deal with. In

this report, only order-of-magnitude estimates of these coefficients

'ta
%9

*41"

'a. .a ' , '
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were obtained. The important observations, however, are that the rela- 0

ticns do exist and that they are not coupled to the propagation prob-

* lem. Thus, the coefficients can be solved independently or inferred

by some other means such as experimental measurements or empirical

modeling.

The solutions derived in this report are in good agreement with

the present understanding of the multiple-scattering phenomenon.

Closed form expressions were obtained that are useful for analytical

* purposes. In particular, the model provides a convenient theoretical

tool for the analysis of the multiple-scattering effect on the inver-

sion of the lidar data. This will constitute the subject of a future

report.
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